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Abstract. In this contribution, we have introduced
intramolecular coupling in order to study possible mod-
ifications in the topology of the resonances associated
with the four-wave mixing signal emerging as a conse-
quence of incorporating the permanent dipole moments
when the rotating-wave approximation is not included.
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1 Introduction

The two-state model for the characterization of mole-
cules interacting with a classical electromagnetic field
has proven to be useful in molecular spectroscopy and
nonlinear optics [1, 2]. Generally, these two states
are considered to interact with each other through the
external field. Our present model consists of two
electronic states whose potential-energy curves are
described as two displaced harmonic potentials. In this
study, we investigate topological modifications intro-
duced in the four-wave mixing signal for a homoge-
neously broadened two-level system, including a simple
scheme for the vibrational structure and the intra-
molecular coupling interactions and considering the
presence of molecular electronic states with nonzero
permanent dipole moments. We carefully examine how
the intramolecular coupling may affect properties found
for systems in which such a coupling does not occur. Our
effective two-level system of vibronic states is described
in Fig. 1. The curves are displaced horizontally by R,
and vertically by Fj, the ground-state vibrational ener-
gies by Ejy and Ejy for each potential, and the vibra-
tional wavefunctions by ¢, and ¢,,, respectively. This
description of intercrossing electronic states corresponds
to the so-called diabatic or uncoupled representation [3].

A residual perturbation, H, coupling these electronic
states can be also included. Consequently, the previous
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curves can be now separated according to the avoided-
crossing rule as depicted in Fig. 2, where these new
eigenstates of the electronic Hamiltonian belong now to
the so-called adiabatic or coupled representation and its
shape depends on the value of the non-diagonal matrix
element of H (denoted in Fig. 2 by v). Here, £ and E~
denote the resulting vibronic energies after inclusion of
the coupling H, and the situation illustrated in Fig. 2
corresponds to situation where the diabatic picture
renders a good description for the vibronic states.

2 Intramolecular coupling model

In the present model, the Hamiltonian associated with
the molecular system can be written as H = Hy + H,
where Hj represents two harmonic oscillators uncoupled
from each other and H corresponds to a residual term
(depending only on the electronic coordinates) which
induces the intramolecular coupling. The two energy
levels and the corresponding eigenfunctions involved can
be then written as
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where 7 and R correspond to the electronic and nuclear
coordinates and where the following equalities hold:
Eyj=(j+1/2h0, Ex=(k+1/2)ho+V; Ci=[1+
(42)°)7" with 4% = (Er; — %) /{d11u)v -

In our case, v represents the nondiagonal matrix
element of H between the electronic wavefunctions
Y (r;R) and y,(r;R). The usual criteria of weak-,
intermediate- and strong-coupling cases apply here:
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Fig. 1. Diabatic representation. The ground-state vibrational en-
ergies (Ejo and Ey) for each harmonic potential and corresponding
vibrational wavefunctions (¢, and ¢,,) are represented. The
minima of the two potentials are displaced vertically in energy by ¥V,
and horizontally by the distance Ry
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Fig. 2. Adiabatic representation. The residual perturbation giving
rise to the separation of the two harmonic curves (represented in
Fig. 1) is depicted according to an avoided-crossing rule

v < Stw/4, v~ Shw/4, and v > Shw/4, respectively,
where S = (mw/#)R3, with m being the mass associated
with the vibrational mode described by the nuclear
coordinate R and where R, represents the coordinate
separation in the two-minima electronic potentials [4].
In our model, the transition and permanent dipole
moments between the states ¥~ and W™ can be written as

uoy = —CC | ApAnn(0) + py (—RO)}

= CCita(—=Ro) {1l ax) (Afk + A;k) (3)

and
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with i = — or +.

We have also considered nonzero permanent dipole
moments associated with the states described by the
uncoupled states ¥, and y,, respectively, described by

;mmz/wmmwwar, (5)

where [ is the total electronic dipole moment operator
and i,j = 1,2. These moments y;; are evaluated at the
nuclear equilibrium distances corresponding to each
uncoupled electronic state, i.e., p;;(—Ro), t»(0), and
(by the Franck—Condon principle) u;,(—Ry). The vibra-
tional overlap factors (¢;;|¢) in the above expression
can be then evaluated according to the Pekarian formula

[4] as (¢iolPu) = ((/;)11)/2 Sk2 exp(—S/4)27%/? for the case

j=0.

3 Four-wave-mixing signal and macroscopic nonlinear
local polarization

We presently describe the time-dependent interaction of
a molecule with a total external field and with a heat
reservoir using the Liouville formalism [5] and the
conventional optical Bloch equations in the semiclassical
approximation:

p(t) = a(t)p(t) + % (6)
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and where 4 = —[i(wg —y) + Ty | and B = [i(wg — A)—
T;'']. Here, |Q| and |/] represent the radiative interaction
among the incident plane wave, E(f), characterized by
the Rabi frequency Q = ji_, E(t)/h, and 1= & E(1)/h,
with £ =i —ji,,, where ji_, and ¢ are the transition
moments and difference between the permanent dipole
moments for the coupled states, respectively, 7 and 75
are the longitudinal and transversal relaxation times,
and g represents the Bohr frequency of the molecular
two-level system. In the present model, we introduce the
four- wave-mixing (FWM) spectroscopy technique,
where the solution consists of a nonabsorbent solvent
and solute molecules having an electronic transition in
resonance with the electromagnetic fields. In this experi-
mental technique, two incident laser beams (a pump and
a probe) generate a signal at a mixed frequency and
wave vector. The nonlinear signal frequency and wave
vector are related by w; = 2w; — w, and k3 = 2k; — ko,
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where the subscripts 1, 2, and 3 refer to pump, probe,
and signal field, respectively. In the FWM technique, we
can also write the intensity in the local regime of
propagation for the generated signal by Ipwm =
ce|Pu(1)* /8n, with Py(¢) being the homogeneous mac-
roscopic polarization, expressed by

Py () = NTr[p()A] (7)

where N represents the chemical concentration of the
absorbent molecules. Taking into account the antireso-
nant terms and neglecting the rotating-wave approxi-
mation, Eq. (7) can be solved perturbatively to second
order in the pump beam () and first order in the probe
beam (w;) to give the following expression of the
frequency Fourier components of the induced polariza-
tion for the homogeneous spectral linewidth:
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where the angled brackets correspond to an average over
the distribution of molecular orientation, 0. Here,
p;i(w3)(i = —,+) represents the Fourier component of
the population that oscillates at frequency ws;, and
p_.(w3) and p,_(w3) represent the Fourier components
of the coherences oscillating at the same frequency. In
the steady-state approximation [6] and calculating the
different components (coherences and populations) of
the reduced density matrix at the optical frequency of
interest, we are led to the following expression for the
polarization:
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Generally, the FWM spectrum is obtained as a
function of the frequency of one of the incident beams
tuned on and off the resonant frequency. Studying the
characteristics of these spectra is important for under-
standing the properties of the nonlinear process that
generates the signal and for the optimization of the
method of measuring the population and phase relaxa-
tion times, 77 and 75, respectively. In this article we
study the topological characteristics of the signal in a
frequency space given by Aj=w; —wy and A; =
wy — wq, where the intensity of the FWM signal in the
present local homogeneous third-order model is pro-
portional to the square modulus of the complex polar-
ization. A better resolution of the signal’s spectra in
frequency space is obtained by means of the following
normalized expression:

|P(o3; A1, Ao, )

) [P(w3; Ap = Ay = 0, &) )
where now E’ :E for the coupled states and E =d
for uncoupled states, according to the definition
E=p__—p,, and d=j, — i, respectively. For
all calculations, we chose green malachite dye with a
resonance frequency wy = 3.0628 x 10" s~! and values
of Ty =T =13x10"3s and having transition and
permanent dipole moment values of =y =
0.1D,u;;, =1.0D, and py = 1.3D. These parameters
correspond to typical large organic dyes, which we
furthermore consider as solutions of aligned solute
molecules (dimers) with intramolecular (intermolecular)
couplings. Furthermore, and for the sake of simplicity,
we will only consider the situation in which the
permanent and transition dipole moments are aligned
with the external electric field. This assumption is
frequently used [7].

We have studied in previous work the effects of these
permanent dipole moments in the absence of the rotat-
ing-wave approximation, which generates new peaks
(different from the ones obtained at zero permanent di-
pole moments) associated with the FWM signal for a
homogeneous two-level system [8]. All the results of
previous work by Bessega et al. [8] and Paz et al. [9],
which included the permanent dipole moments of the
system without intramolecular coupling, were repro-
duced here as limiting cases for spectral regions of
reduced detuning frequency.

The intensity of the FWM signal predicted in the
present model as a function of the pump and probe
detunings is depicted in Fig. 3, where the intramolecular
coupling is included in the frequency intervals (—wy, wp)
for w; and (—2wg,2wy) for w,. It is important to note
here that it is always possible to obtain a frequency
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Fig. 3. Intensity of the four-wave-mixing signal as a function of the
pump (w; — wg)T» and probe (w; — wg)T> detuning, taking into
account the intramolecular coupling for casesa V; = 1,b 15 = 0.3, ¢

Jo = 0.1 and d ¥ = 0.01 The value of the intramolecular coupling
parameter is 0.01 in all cases

spectrum with characteristics equivalent to the previ-
ously studied cases using the present adiabatic repre-
sentation by considering similar @ for the uncoupled
basis. We can observe from Fig. 3 a shifting to lower
detuning values of the different resonances involved with
a decrease in the coupling parameters. For instance, the
decrease in the parameter J; represented by the sequence
from Fig. 3a—d, generates a cluster formed by six out of
a total of 12 peaks (Fig. 3d). As is highly evident from
Fig. 3d, our final spectrum has 12 resonance-structure
configurations carrying the intensity symmetry and
the symmetry of the detuning coordinates. Equivalent
behavior can also occur when J; is constant and
the parameter v is decreased.

4 Final comments

The model presented in this contribution represents a
generalization of the conventional local models pro-
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posed to date in the literature. In general, these
conventional studies do not take into account the
permanent molecular dipole moments and they usually
leave out the anti-resonant terms neglected by using the
rotating-wave approximation. Additionally, in this sutdy
we have incorporated the intramolecular coupling and
its effect on the topological description associated with
the FWM optical signal. We have also shown that
working in frequency space is very useful for the analysis
of the topology of the nondegenerate FWM signal.
More details concerning to the localization of these
resonances with respect to the coupling parameters, the
relation between their frequency and the local nonlinear
polarization, and details concerning the topological
modification of these peaks by including spatial
propagation of the fields, high-order effects in the
electromagnetic fields, stochastic effects of the solvent,
stochastic effects of the phase associated with the fields,
and the connection between the reduced polarization

and the photonics process of each resonance are to be
published elsewhere.
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